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a b s t r a c t

Multiobjective combinatorial optimization dealswith problems consideringmore than one
viewpoint or scenario. The problem of aggregating multiple criteria to obtain a globalizing
objective function is of special interest when the number of Pareto solutions becomes con-
siderably large orwhen a single,meaningful solution is required. Orderedweighted average
or orderedmedian operators are very useful when preferential information is available and
objectives are comparable since they assign importance weights not to specific objectives
but to their sorted values. In this paper, ordered weighted average optimization problems
are studied from a modeling point of view. Alternative integer programming formulations
for such problems are presented and their respective domains studied and compared. In
addition, their associated polyhedra are studied and some families of facets and new fam-
ilies of valid inequalities presented. The proposed formulations are particularized for two
well-known combinatorial optimization problems, namely, shortest path and minimum
cost perfect matching, and the results of computational experiments presented and ana-
lyzed. These results indicate that the new formulations reinforced with appropriate con-
straints can be effective for efficiently solving medium to large size instances.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Multiobjective combinatorial optimization deals with problems considering more than one viewpoint or scenario. They
inherit the complexity difficulty of their scalar counterparts, but incorporate additional difficulties derived from dealing
with partial orders in the objective function space. The standard solution concept is the set of Pareto solutions. However,
the number of Pareto solutions can grow exponentially with the size of the instance and the number of objectives. A first
approach to overcome this difficulty focuses on a specific subset of the Pareto set, such as, for instance, the supported Pareto
solutions (see e.g. [4]). Those are the Pareto solutions that optimize linear scalarizations of the different objectives. However,
it is possible to exhibit instances for which even the number of supported solutions grows exponentially with the size of
the instance. Furthermore, focusing on supported Pareto solutions a priori excludes compromise solutions that could be
preferred by the decision maker. For the above reasons, more involved decision criteria have been proposed in the field
of multicriteria decision making [19]. These include objectives focusing on one particular compromise solution, which, for
tractability and decision theoretic reasons, seem to be better suited when an appropriate aggregation operator is available.

In some cases, a particularly important Pareto solution related to a weighted ordered average aggregating function is
sought. Provided that some imprecise preference information on the objectives is available, and that they are comparable,
an averaging operator can be used to aggregate the vector of objective values of feasible solutions. The OrderedMedian (OM)
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objective function is very useful in this context since it assigns importance weights not to specific objectives but to their
sorted values. OM operators have been successfully used for addressing various types of combinatorial problems (see, for
instance, [18,15,20,1,14] or, [6]).

When applied to values of different objective functions inmultiobjective problems, theOMoperator is called in the litera-
ture OrderedWeighted Average (OWA) [24,25]. It assigns importance weights to the sorted values of the objective function
elements in a multiple objective optimization problem. The OWA has been also used in the literature under the name of
Choquet optimization to address continuous problems [22,13] andmore recently it has been applied to some combinatorial
optimization problems, like theminimum spanning tree and 0–1 knapsack [7]. The OWA is, however, a very broad operator,
which, depending on the cases, can be seen as an ordered median or as vector assignment ordered median [12], and which
can be applied to any combinatorial optimization problem. We therefore believe that its full potential within combinatorial
optimization is worth being exploited. This naturally leads to a thorough study of its modeling properties and alternatives,
which is the focus of this paper.

From amodeling point of view, the OWA operator can be formulatedwith a combination of discrete and continuous deci-
sion variables linked by several families of linear constraints. Since the domain of combinatorial optimization problems can
be characterized with ad hoc discrete variables and linear constraints, it becomes clear that any combinatorial optimization
problem with an OWA objective can be formulated as a linear integer programming problem, by suitably relating the two
sets of variables and constraints. Of course, not all formulations are equally useful. Moreover, it is not even clear that the best
formulation for the domain of the combinatorial object should be preferred, because its ‘‘integration’’ with the formulation
of the OWA may imply additional difficulties. In this work we propose three alternative basic formulations for a combina-
torial object with an OWA objective. Each basic formulation uses a different set of decision variables to model the OWA
objective.We study properties yielding to alternative formulations, which preserve the set of optimal solutions, andwe also
compare the formulations among them. In addition we propose various families of facets and valid inequalities, which can
be used (independently or in combination) to reinforce the basic formulations. For keeping the extension of the paperwithin
some reasonable limits, we report the results obtained with a particular case of the OWA operator, namely the Hurwicz cri-
terion [10]. This criterion, which has been used by other authors in the literature (see e.g. [16,7]) is a non-monotonic and
non-convex criterion. In our experience the Hurwicz criterion behaves quite similarly to other non-convex OWA criteria, so
the results we report and derived conclusions can be extended to analogous criteria as well. In the final part of the paper, we
focus on two classical optimization problems: shortest path and minimum cost perfect matching. For these two problems
we analyze the empirical performance of the alternative basic formulations and their possible reinforcements and varia-
tions. From our computational experience we cannot conclude that any of the formulations is superior to the others since
the behavior of the proposed formulation varies with the different combinatorial object to be considered (see Section 6).

The paper is structured as follows. Section 2 gives the formal definition of the OWA operator and shows that it has
as particular cases both the ordered median and the vector assignment ordered median. Section 3 presents the three
basic formulations, and their variations, for a combinatorial problem with an OWA objective, studies their properties and
compares them, whereas Section 4 presents different families of valid inequalities and possible reinforcements. Sections 5.1
and 5.2 respectively present the formulation of the combinatorial object that we use in our empirical study of the shortest
path and minimum cost perfect matching problems with an OWA objective. Finally, Section 6 describes the computational
experiments that we have run and presents and analyzes the obtained numerical results. The paper ends in Section 7 with
some comments and possible avenues for future research.

2. The ordered weighted average optimization

The Ordered Weighted Average (OWA) operator is defined over a feasible set Q ⊆ Rn. Let C ∈ Rp×n be a given matrix,
whose rows, denoted by C i, are associated with the cost vectors of p objective functions. The index set for the rows of C is
denoted by P = {1, . . . , p}. For x ∈ Q , the vector y ∈ Rp is referred to as the outcome vector relative to C . In the following
we assume y = Cx, with x ∈ Q . For a given y, let σ be a permutation of the indices of i ∈ P such that yσ1 ≥ · · · ≥ yσp . Let
also ω ∈ Rp+ denote a vector of non-negative weights. Feasible solutions x ∈ Q are evaluated with an operator defined as
OWA(C,ω)(x) = ω′yσ . The OWA optimization Problem (OWAP) is to find x ∈ Q of minimum value with respect to the above
operator, that is

OWAP : min
x∈Q

OWA(C,ω)(x).

Example 1. Consider

Q =

x ∈ {0, 1}3 : x1 + x2 + x3 = 2


, C =

 1 4 1
1 1 3
5 1 2

 and ω′
=

1 2 4


.

Table 1 illustrates, for each feasible x ∈ Q , the values of y = Cx, yσ and OWA(C,ω)(x) = ω′yσ . The optimal value to the OWAP
is minx∈Q OWA(C,ω)(x) = 23.

The OWA operator is a very general functionwhich, as we see below, has as particular cases well-known objective functions.
We next describe some of them.
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Table 1
Solutions x ∈ Q , values y = Cx, sorted values yσ and OWA(C,ω)(x) for Example 1.

x y yσ OWA(C,ω)(x) = ω′yσ
1 1 0

′ 
5 2 6

′ 
6 5 2

′ 24
1 0 1

′ 
2 4 7

′ 
7 4 2

′ 23
0 1 1

′ 
5 4 3

′ 
5 4 3

′ 25

Table 2
Solutions x ∈ Q , values djxj , sorted dσj xσj and OM(d,ω)(x) for the OM of Example 2.

x (djxj)j∈P (dσj xσj )j∈P OM(d,ω)(x) =


j∈P ωjdσj xσj
1 1 0

′ 
5 1 0

′ 
5 1 0

′ 7
1 0 1

′ 
5 0 2

′ 
5 2 0

′ 9
0 1 1

′ 
0 1 2

′ 
2 1 0

′ 4

Table 3
The OM instance of Example 2 as an OWA: y = Cx, yσ and OWA(C,ω)(x).

x y yσ OWA(C,ω)(x) = ω′yσ
1 1 0

′ 
5 1 0

′ 
5 1 0

′ 7
1 0 1

′ 
5 0 2

′ 
5 2 0

′ 9
0 1 1

′ 
0 1 2

′ 
2 1 0

′ 4

2.1. The Ordered Median (OM) objective function

The OM objective [15] minimizes a weighted sum of ordered elements. It is a well known function that unifies many
location problems as the p-median problem, the p-center problem, etc.

Let Q ⊆ Rn denote the feasible domain for an optimization problem and let d ∈ Rn be a cost vector and ω ∈ Rn a given
weights vector. For x ∈ Q , let σ denote a permutation of the indices of x, such that dσjxσj ≥ dσj+1xσj+1 , j ∈ {1, 2, . . . , n− 1}.
The OM operator is OM(d,ω)(x) =


j∈P ωjdσjxσj and the OM Problem (OMP) is therefore defined as

OMP: min
x∈Q

OM(d,ω)(x) =


j∈P

ωjdσjxσj .

To cast the OM operator as an OWA operator, we only need to set the rows of the C matrix as (C i)′ = diei, i ∈ {1, . . . , n},
where ei ∈ Rn is the ith unit vector of the canonical basis of Rn. Let Diag(d) denote the diagonal matrix whose diagonal
entries are the components of the vector d, thus, C = Diag(d). Then OM(d,ω)(x) = OWA(Diag(d),ω)(x).

Example 2. Consider

Q =

x ∈ {0, 1}3 : x1 + x2 + x3 = 2


, d =


5 1 2

′ and ω =

1 2 4

′
.

Table 2 illustrates, for each feasible x ∈ Q , the values of (djxj)j∈P , (dσjxσj)j∈P , and OM(d,ω)(x) =


j∈P ωjdσjxσj . The optimal
OM value is minx∈Q OM(d,ω)(x) = 4.

To cast the OM operator as an OWA operator, we only need to set the rows of the C matrix as

C = Diag(d) =

 5 0 0
0 1 0
0 0 2

 .

The values of y = Cx, yσ and OWA(C,ω)(x) = ω′yσ are shown in Table 3. The optimal OWA value is minx∈Q OWA(Diag(d),ω)(x)
= minx∈Q OM(d,ω)(x) = 4.

2.2. The vector assignment ordered median objective function

The Vector Assignment Ordered Median (VAOM) problemwas recently introduced by Lei and Church [12] in the context
of discrete location–allocation problems. In this context, theVAOMgeneralizes bothOMandVector AssignmentMedian [23].
As we see below the OWA generalizes the VAOM as well. First, we briefly introduce the VAOM.

The main decisions in location–allocation problems are the set of facilities to open, and the assignment of customers to
open facilities so as to satisfy their demand. Consider a given set of customers P = {1, . . . , p}, where each customer is also
a potential location for a facility, and let q ≤ p denote the number of facilities to open. Associated with each customer i ∈ P
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there is a demand ai. A unit of demand at customer i served from facility k incurs a cost dik. We will use di to denote the p
dimensional vector of the distances associated with customer i. Usual objectives focus on service cost minimization.

Many location–allocation models allow splitting the demand at customers among several facilities, so allocating
customer i to facility k means that some positive fraction of ai is served from facility k. However, without any further
incentive or constraint, in optimal solutions customers will be allocated to one single facility, the closest one among those
that are open. Since such solutions often exhibit privileged customers, equity measures have been proposed to balance out
the service level of the customers. This is the case of the VAOM that imposes the specific fractions of the demand at each
customer to be served from the various open facilities. Let γiℓ denote the fraction of ai that must be served from the ℓth
closest facility to customer i where ℓ ∈ I = {1, . . . , q}. To measure the service level of customer i in a given solution, the
distances from i to the different open facilities are ordered and weighted with the values γiℓ according to their rank in the
sorted list of distances. This invites to characterize solutions bymeans of binary decision variables xikℓ, i, k ∈ P, ℓ ∈ I , where
xikℓ is equal to 1 if i is allocated to facility k as the ℓth closest facility. Now, the service cost of customer i can be computed

as si =


k∈P


ℓ∈I aiγiℓdikxikℓ. Note that si can be expressed in a compact way as si = C
ixi, where xi is the vector of decision

variables (xikℓ)k∈P,ℓ∈I = (xi11, x
i
12, . . . , x

i
21, x

i
22, . . .)

′, and (C
i
)′ = (aiγildik)k∈P,ℓ∈I .

The VAOM operator is computed as a weighted sum of the service costs of all customers. A weight ωj is applied to the
customer with the jth lowest service level, i.e. with the jth highest service cost. For a given solution, x, and its associated
vector s as defined above, let σ be a permutation of the indices of P such that sσ1 ≥ · · · ≥ sσp . Then, VAOM(d,γ ,a,ω)(x) =p

j=1 ωjsσj and the VAOM Problem (VAOMP) is therefore defined as

VAOMP: min
x∈Q

VAOM(d,γ ,a,ω)(x) =

p
j=1

ωjsσj .

The set of feasible solutions to the problem is fully characterized by the set of feasible assignments, since an explicit
representation of the open facilities is not needed. These can be obtained directly from x by identifying the indices k ∈ P
with xikℓ = 1 for some i ∈ P, ℓ ∈ I . Thus in this problem Q is given by the set of feasible assignments. For reasons that will
become evident when we cast the VAOM operator as an OWA, we express the assignment vectors x as one dimensional n
vectors with n = p2q. In particular x is partitioned in p blocks, each of them associated with a different customer i ∈ P . That
is, x = (x1′

| . . . | xi′ | . . . | xp′)′. In turn, each block xi consists of p smaller blocks, each with q components. The kth block of
xi contains the q components xikℓ for the indices ℓ ∈ I .

Now, to cast the VAOM as an OWA operator, we define p objective functions C
ixi, one associated with each customer

i ∈ P . In particular, objective C
ixi represents the service cost of customer i ∈ P, si. With the above characterization of

vectors x ∈ Q , each C
i
must be defined by an n vector. Thus expressing the VAOM as an OWA becomes basically a notation

issue. For each fixed i ∈ P , again we partition the cost vector C
i
in p blocks. Similarly to the partition of vectors x ∈ Q , each

block corresponds to a different customer, and has pq components. We now set at value 0 all the entries except those in the
block of customer i, which are given by the entries of the vector C

i
as defined above. That is: C i

= (0pq | . . . | C
i
| . . . | 0pq),

where 0pq = (0, . . . , 0) ∈ Rpq. With this notation it becomes clear that C ix = C
ixi. Hence,

VAOM(d,γ ,a,ω)(x) = OWA(C,ω)(x).

Example 3. Consider an instance of a VAOM problem with p = 3 customers in which q = 2 facilities must open. Suppose
all the customers have one unit of demand, i.e. a1 = a2 = a3 = 1, and suppose the rest of the data is the following:

(dik)i,k∈P =

0 2 6
2 0 4
8 4 0


, (γil)i∈P,l∈I =

0.5 0.5
0.5 0.5
1 0


, ω′

=

0 1 2


.

Since q = 2 the feasible combinations of facilities to open are {1, 2}, {1, 3} and {2, 3}. When the distances of each customer
to the potential facilities are all different, like in this example, each combination of open facilities determines a unique
feasible assignment vector x. For instance, when facilities 1 and 2 open, then customer 1, has facility 1 as the closest and
facility 2 as the second closest, so x111 = x122 = 1, and x112 = x121 = x131 = x132 = 0. The service cost of customer 1 is thus
s1 = γ11d11x111 + γ12d12x122 = 0 + 0.5 × 2 = 1. For customer 2 we have x212 = x221 = 1, and x211 = x222 = x231 = x232 = 0,
with service cost s2 = 0 + 0.5 × 2 = 1. With this set of open facilities, the assignment for customer 3 is x312 = x321 = 1, and
x311 = x322 = x331 = x332 = 0 with service cost s3 = 4. Since s3 ≥ s1 ≥ s2 the objective function value for this solution is thus
0 × 4 + 1 × 1 + 2 × 1 = 3.

Proceeding similarly with the other possible combinations of open facilities we obtain the complete set of feasible
solutions Q , which in this example is given by the set of binary vectors given in Table 4:

For modeling the VAOM as an OWA we define the cost matrix C as:

C =

0 0 1 1 3 3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 2 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 8 0 4 0 0 0


.
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Table 4
Complete set of feasible solutions Q as binary vectors for Example 3.

x111 x112 x121 x122 x131 x132 x211 x212 x221 x222 x231 x232 x311 x312 x321 x322 x331 x332
1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0
1 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0

Table 5
Values of y, yσ and OWA(C,ω)(x) for the feasible solutions of
Example 3.

y yσ OWA(C,ω)(x) = ω′yσ
1 1 4

′ 
4 1 1

′ 3
3 3 0

′ 
3 3 0

′ 3
4 2 0

′ 
4 2 0

′ 2

Table 5 shows the values of y, yσ and OWA(C,ω)(x) for each x ∈ Q . The optimal value of the VAOM isminx∈Q VAOM(d,γ ,a,ω)(x)
= min{3, 3, 2} = 2.

2.3. The vector assignment ordered median function of an abstract combinatorial optimization problem

In the above sectionwehave applied the VAOMoperator to the locations and allocations of a generalmultifacility location
problem, according to the original definition by Lei and Church [12]. Nevertheless, this operator can be also applied to the
characteristic vector of a combinatorial solution of any abstract combinatorial optimization problem, as we also did with
the ordered median operator. In doing that we obtain a more general interpretation of this type of objective function that
can also be cast within the OWA operator.

Let Q ⊆ Rn denote the feasible domain for an optimization problem,ω ∈ Rp+ a given vector of nonnegative weights and
P = {1, . . . , p}. Recall that a VAOM operator considers for each objective function si, i ∈ P different fractions, γ i, of the cost
vector d for the sorted elements of the decision vector x.

For x ∈ Q , the evaluation of the ith component of the VAOM objective is given by si = γ idixi, for all i ∈ P . Let σ denote a
permutation of the indices of P , such that sσi ≥ sσi+1 , for i = 1, . . . , p−1. TheVAOMoperator is VAOM(d,γ ,ω)(x) =


i∈P ωisσi .

The reader may note that the original definition of VAOM can be accommodated to this general setting once we identify the
combinatorial object Q as the set of location–allocations in the discrete location problem. In that case, there are i = 1, . . . , n
objective functions associated with each of the customers and then the fractions that apply to each customer i are non-null
only for a subset of the open facilities (servers) corresponding to the q-closest ones.

This can be done by defining a set of variables, one per customer i, with n blocks. In the block k, xi�k = (xi1k, . . . , x
i
nk)

′

accounts for the allocation of i to any facility as the kth closest, therefore xi = (xi′�1 | xi′�2 | . . . | xi′�n)
′ for i = 1, . . . , n. This

way, the cost vectors must also have the same structure by blocks, each block corresponding with the level of assignment,
i.e. denoting by di� = (di1, . . . , d

i
n)

′
∈ Rn2 then di = (di′� | di′� | . . . | di′� )

′. Finally, since the fractions of costs are applied
according to the level of assignment, the structure of the vector of fractions γ i is also by blocks. Block k represents the
fraction of the cost that is accounted for customer i at the kth level of assignment. Denoting by γ i

ℓ = (γiℓ, . . . , γiℓ)
′
∈ Rn

then γ i
= (γ i

1 | γ i′
2 | . . . | γ i′

n )′ for i = 1, . . . , n.
To cast the VAOM as an OWA operator, we only need to set γ̄ i

= ( 0np
1

| . . . | γ i′
i

| . . . | 0np
p

)′, d̄i =

( 0np
1

| . . . | di
′

i

| . . . | 0np
p

)′, x = (x1′
| . . . | xi′ | . . . | xp′)′ and C i

= (γ̄ i
j d̄

i
j)
p(pn)
j=1 . Then, the VAOM can be written

as the following OWA operator VAOM(d,γ ,ω)(x) = OWA(C,ω)(x).
As we have shown above, OWA is a very general operator. In the following, we will work in more particular settings,

namely we shall restrict ourselves to assume that Q is a combinatorial object which can be represented by a system of linear
inequalities.

3. Basic formulations for the OWAP, properties and reinforcements

This section presents alternative Mixed Integer Programming (MIP) formulations for an OWAP, which are analyzed and
compared. The starting point of our study is three basic formulations, which, broadly speaking, differs from one to another
on how the permutation that defines the ordering of the cost function values is modeled. Two of the formulations presented
use binary variables z to define the specific positions in the ordering of the sorted cost function values, whereas the other
one uses binary variables s to define the relative position in the ordering of the sorted cost function values. One of the two
formulations based on the z variables also uses an additional set of decision variables y for modeling the specific values of



102 E. Fernández et al. / Discrete Applied Mathematics 169 (2014) 97–118

the cost functions depending on their position in the ordering. All three formulations use a set of decision variables θ to
compute the values of the objectives sorted at specific positions. In each case, alternative formulations are presented, which
preserve the set of optimal solutions. Before addressing any concrete formulation we discuss the meaning of both sets of
variables z and s as well as their relationships.

3.1. Alternative formulations for permutations

The essential element in our formulations rests on the representation of ordering within a MIP model. To such end, we
devote this section to describe how a permutation can be represented with binary variables. Recall that we have introduced
P = {1, . . . , p} as the set of the cost function indices. Let π : P → P be a function representing a permutation of P . That is, it
assigns the index i of each cost function (also denoted by cost function i) to a position indexed by j (also denoted by position
j). Note that π is a permutation if each cost function is assigned to a single position and if each position contains a single cost
function index. In what follows, we useπi = π(i) to denote the position occupied by the cost function i ∈ P and σj = π−1(j)
to denote the index of the cost function that occupies position j (we recall that the notation σ was previously used in
Section 2). Note that σ also defines a permutation of the positions of P . In what follows we will indistinctively use π and σ .
Slightly abusing notationwe refer toπ as to the cost functions permutation and to its inverse σ as to the positions permutation.

In order to model π as a permutation, let zij be a binary decision variable defined as

zij =


1 if cost function i occupies position j, (i.e. if πi = j)
0 otherwise.

The set of variables z defines a permutation if:
(i) each position contains a single cost function:

i∈P

zij = 1 j ∈ P, (1)

and,
(ii) each cost function i is assigned to a single position j:

j∈P

zij = 1 i ∈ P. (2)

In addition, we observe that since system (1)–(2) contains exactly 2p − 1 linearly independent equations, the above
permutation can also be represented without variables zi1, for all i ∈ P , that can be replaced by 1 −


j∈P:j>1 zij. In this

way, system (1)–(2) can also be rewritten as
i∈P

zij = 1 j ∈ P : j > 1, (3)
j∈P

zij ≤ 1 i ∈ P. (4)

Example 4. Let π be a permutation defined by π =

3 2 4 1


or equivalently by σ =


4 2 1 3


. Then, π can be

represented by using variables z as follows:

(zi,j)i,j∈P =

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

 , or (zi,j)i,j∈P:j>1 =

0 1 0
1 0 0
0 0 1
0 0 0

 . �

An alternative representation of a permutation, which we have also found useful is based on a different set of variables
defined as:

sij =


1 if cost function i is placed before position j in the ordering,
0 otherwise.

The set of variables s defines a permutation if:
(i) for all j ∈ P there are j − 1 cost functions placed before position j:

i∈P

sij = j − 1 j ∈ P, (5)

and
(ii) cost function i cannot be placed in position j unless it is also placed in position j + 1, i.e.,

sij+1 − sij ≥ 0 i, j ∈ P : j < p. (6)
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Again we can reduce the number of decision variables, now by eliminating si1 for all i ∈ P . Indeed, since there is no cost
function placed before position 1 in any ordering, all the si1, i ∈ P can be fixed to zero. In this way, permutation (3)–(4) can
be also represented by means of the following reduced set of constraints:

i∈P

sij = j − 1 j ∈ P : j > 1, (7)

sij+1 − sij ≥ 0 i, j ∈ P : 1 < j < p. (8)

Example 5. Let π be a permutation defined by π =

3 2 4 1


or equivalently by σ =


4 2 1 3


. Then, π can be

represented by using variables s as follows:

(si,j)i,j∈P =

0 0 0 1
0 0 1 1
0 0 0 0
0 1 1 1

 , or (si,j)i,j∈P:j>1 =

0 0 1
0 1 1
0 0 0
1 1 1

 . �

With the above considerations, variables z and s are related by means of

zij =


sij+1 − sij i ∈ P, j = 1, . . . , p − 1
1 − sij i ∈ P, j = p (9)

and equivalently,

sij = 1 −


k≥j

zik, i, j ∈ P. (10)

3.2. OWAP formulations with variables for the positions of sorted cost function values

For a given feasible set Q ⊆ Rn, consider the binary decision variables z as defined in Section 3.1 to represent the
permutation π associated with the sorted cost function values C ix, i ∈ P . Let also θj be a real decision variable equal to the
value of the cost function sorted in position j. Next, we give an integer linear programming description of the OWAP where
we useM to denote a non-negative upper bound of the value of all the cost functions. (We refer the interested reader to [1]
or [15] for similar sets of decision variables and formulations for the discrete ordered median location problem.)

F z
0 : V = min


j∈P

ωjθj (11a)

s.t.

i∈P

zij = 1 j ∈ P (11b)
j∈P

zij = 1 i ∈ P (11c)

C ix ≤ θj + M(1 − zij) i, j ∈ P (11d0)

θj ≥ θj+1 j ∈ P : j < p (11e)

x ∈ Q , z ∈ {0, 1}p×p. (11f)
The objective function (11a) minimizes the weighted average of sorted objective function values, provided that θj, j ∈ P , are
enforced to take on the appropriate values. As seen, constraints (11b)–(11c) define a cost functions permutation by placing
at each position of π a single cost function and each cost function at a single position of π . Constraints (11d0) relate cost
function values with the values placed in a sorted sequence. Constraint (11e) imposes that the sorted values are ordered
non-increasingly.

In the following we denote by �z
0 the domain of feasible solutions to formulation F z

0 . That is,

�z
0 =


(x, z, θ) satisfying constraints (11b), (11c), (11d0), (11e), (11f)


.

Consider now the family of inequalities

C ix ≤ θj + M


1 −


k≥j

zik


i, j ∈ P, (11d)

and note that, for z satisfying (11c), inequalities (11d) can be rewritten as

C ix ≤ θj + M

k<j

zik i, j ∈ P, (11d′)

since for all i, j ∈ P, 1 −


k≥j zik =


k<j zik.
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Remark 1. Observe that when variables zi1, i ∈ P are not defined and the permutation is described bymeans of inequalities
(3) and (4), then constraints (11d0), (11d) and (11d′) must consider separately the case j = 1 from the case j ∈ P, j > 1. In
particular, the case j = 1 reduces to

C ix ≤ θ1 i ∈ P, (12)

since the first position has always a value greater than or equal to any cost function.

Let �z
= {(x, z, θ) satisfying constraints (11b), (11c), (11d), (11e), (11f)} denote the domain obtained from �z

0 when con-
straints (11d0) are replaced by constraints (11d).

Property 1. �z
0 = �z .

Proof. It is clear that �z
0 ⊇ �z , since for i, j ∈ P given, the right hand side of the associated constraint (11d) is smaller than

or equal to that of constraint (11d0).
To prove that �z

0 ⊆ �z also holds let (x, z, θ) ∈ �z
0 and we show that (x, z, θ) satisfies constraints (11d). For i, j ∈ P

given, we distinguish two cases:
• If zij = 1 then (11d) holds for this pair of indices.
• If zij = 0 then by (11c), there must exist j′ ∈ P, j′ ≠ j, such that zij′ = 1. If j′ < j, then


k≥j zik = zij = 0, and (11d) holds

for the pair of indices i, j. Otherwise, if j′ > j, then


k≥j zik = zij′ = 1 so the right hand side of constraint (11d) for the
pair i, j takes the value θj. Now constraint (11d0) for the pair of indices i, j′ implies that C ix ≤ θj′ . By constraints (11e),
we also have θj ≥ θj′ and thus (11d) also holds for the pair of indices i, j. �

Remark 2. Since �z
0 = �z , an equivalent formulation for the OWAP is

F z
: V = min


j∈P

ωjθj

s.t. (x, z, θ) ∈ �z .

Formulation F z can be preferred to formulation F z
0 for solving an OWAP, since it may provide tighter linear programming

bounds, given that, for fractional vectors z satisfying constraints (11b)–(11c), constraints (11d0) are dominated by
constraints (11d).

In the search for optimal solutions to the OWAP any formulation whose optimal solution set coincides with that of the
OWAP can be of interest. Such formulations could be preferred because they use fewer variables or constraints, or because
their feasible domain has a structure which is easier to explore. Next we present three such formulations. All of them can
be seen as relaxations of formulation F z in the sense that their feasible domains contain �z . However, all of them are valid
formulations for the OWAP since they preserve the set of optimal solutions of F z , i.e. their set of optimal solutions coincides
with that of F z . First we prove a property of optimal solutions.

Lemma 2. Let (x∗, z∗, θ∗) ∈ �z be an optimal solution to F z . Then for each j ∈ P there exists i ∈ P with θ∗

j = C ix∗.

Proof. Let x̃ be a feasible solution in Q . Then, there exists a positions permutation σ that sorts the cost function values in a
non-increasing order. That is, Cσj x̃ ≥ Cσj+1 x̃, ∀j ∈ P \ {p}. Therefore, we can set z̃ = (zσj,j)j∈P and θ = (Cσj x̃)j∈P . Since this is
true for each x ∈ Q , it is true in particular for x∗. �

From the above lemma, we observe that �z is always non empty, provided that Q is non empty.
Let �z

R1 = {(x, z, θ) satisfying constraints (11b), (11c), (11d), (11f)}, i.e, �z
R1 is the relaxation of the domain �z once the

set of constraints (11e) is removed. Next, consider the formulation

F z
R1 : V = min


j∈P

ωjθj

s.t. (x, z, θ) ∈ �z
R1.

Property 3. Every optimal solution to F z
R1 is also optimal to F z .

Proof. Since �z
⊆ �z

R1 it is enough to prove that any optimal solution to F z
R1 is feasible to F z . Let (x, z, θ) ∈ �z

R1 be an
optimal solution to F z

R1 and σ a permutation that sorts the cost function values of x. Let us see that θ verify constraint (11e).
If i ≥ j then Cσix occupies, in the sorted sequence of objective values, a position greater than or equal to the jth. Thus,

constraint (11d) implies that θj ≥ maxi≥j Cσix. Since we are minimizing a function which is a linear combination with
non-negative weights of the θ variables, it follows that in any optimal solution θj = maxi≥j Cσix since, otherwise, the value
of θj could be decreased to maxi≥j Cσix, while keeping all other variables values unchanged and without increasing the
objective function value. Therefore (11e) holds since, otherwise, therewould exist j′ such that θj′+1 > θj′ ⇔ maxi≥j′+1 Cσix >
maxi≥j′ Cσix, which is not possible. �
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Consider now �z
R2 = {(x, z, θ) satisfying constraints (11b), (11d), (11f)}, i.e., �z

R2 is the relaxation of the domain �z
R1 once

the set of constraints (11c) is removed. Next, consider the formulation

F z
R2 : V = min


j∈P

ωjθj

s.t. (x, z, θ) ∈ �z
R2.

Property 4. Every optimal solution to F z
R2 is also optimal to F z .

Proof. Since �z
⊆ �z

R2 it is enough to prove that any optimal solution to F z
R2 is feasible to F z . Let (x, z, θ) be an optimal

solution to F z
R2. If (x, z, θ) is optimal to F z

R1 then, by using Property 3, (x, z, θ) is also optimal to F z . Thus, to prove that (x, z, θ)
is optimal to F z , it suffices to prove that (x, z, θ) satisfies inequalities (11c).

We prove first that


j∈P zij ≤ 1 for all i ∈ P . Using the notation rij =


k≥j zik, for all i, j ∈ P , constraints (11d) can be
rewritten as

C ix ≤ θj + M(1 − rij) ⇔ θj ≥ C ix + M(rij − 1).

Therefore, for all j ∈ P ,

θj = max
i∈P

{C ix + M(rij − 1)}.

Suppose there exists i′ ∈ P with


j∈P zi′j = r > 1, and let j′ = argmax{ri′j = 2 | j ∈ P}. If several indices exist with
j∈P zij > 1 we select i′ as the one with maximum associated j′.
The criterion for the selection of i′ and the definition of j′ imply that ri′j′ = 2 and rij′ ≤ 1 for all i ≠ i′.
Therefore, since M is a strict upper bound on the value of any cost function, the actual value of θj′ is determined by cost

function i′, and we have

θj′ = C i′x + M(ri′j′ − 1) = C i′x + M.

Also, ri′j ≥ 2 for all j < j′. Thus, θj ≥ C i′x + M for all j < j′. Furthermore, rij ≤ 1 for all i ∈ P, j > j′, implying that θj < M for
all j > j′.

Observe, on the other hand, that


j∈P zi′j > 1 implies that there exists some i′′ ∈ P, i′′ ≠ i′ with


j∈P zi′′j = 0. (Other-
wise, adding up all constraints (11b) we get a contradiction.)

Let us now define the solution (x, z, θ) ∈ �z
R2 with the same x components as above, where

z ij =

0 if i = i′, and j = j′

1 if i = i′′, and j = j′

zij otherwise.

It is clear that


j∈P z i′j = r−1, and,


k≥j z i′k = ri′j −1, for all j ≤ j′. It is also clear that


j∈P z i′′j = 1, and,


k≥j z i′′k = 1, for
all j ≤ j′, and 0 for j > j′. For all other i ≠ i′, i′′, it holds that


j∈P z i′j =


j∈P zi′j. Since


k≥j′ z ik ≤ 1, for all i ∈ P wenowhave

θ j′ = max
i∈P


C ix + M


k≥j′

z̄ik − 1


< M ≤ C i′x + M = θj′ ,

and, θ j ≤ θj, for all j ≠ j′.
Therefore, since we are minimizing a linear function with non-negative weights of the θ variables, the objective function

value of (x, z, θ) is smaller than that of (x, z, θ), contradicting the optimality of (x, z, θ). Hence,


j∈P zij ≤ 1 for all i ∈ P .
Let us, finally, see that


j∈P zij ≠ 0 for all i ∈ P . Assume on the contrary that


j∈P zi′j = 0 for some i′ ∈ P . Then, by

adding up all constraints (11b) we get p =


j∈P


i∈P zij


=


i∈P


j∈P zij


=


i∈P,i≠i′


j∈P zij


≤ p − 1, which is
impossible. �

We now consider the inequality version of constraints (11b)
i∈P

zij ≤ 1 j ∈ P. (11b≤)

Remark 3. Observe that when inequalities (11b≤) hold, constraints (11d) are no longer equivalent to (11d′).

Let us define the domain �z
R3 = {(x, z, θ) satisfying constraints (11b≤), (11d′), (11f)}.

It is clear that �z
⊆ �z

R3. However, as we next see, both sets are equivalent for the minimization of the objective (11a)
in the sense that they define the same set of optimal solutions. Consider the problem

F z
R3 V = min


j∈P

ωjθj

s.t. (x, z, θ) ∈ �z
R3.
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Lemma 5. �z
R2 ⊆ �z

R3.

Proof. We prove that any feasible solution (x, z, θ) ∈ �z
R2 verifies that (x, z, θ) ∈ �z

R3. To prove this, it is only necessary to
prove that (x, z, θ) verifies (11d′). From (11d) we have that (x, z, θ) verifies

θj ≥ max
i


C ix − M


1 −


k≥j

zik


, j ∈ P (17)

and for (11d′), we have to prove that (x, z, θ) also verifies

θj ≥ max
i


C ix − M


k<j

zik


, j ∈ P. (18)

We distinguish the following cases:

• If


k≥j zi′k = r > 1 for some i′ then

θj ≥ C i′x + (r − 1)M ≥ max
i


C ix − M


k<j

zik


, (19)

and the result holds.
• If


k≥j zik = 1 for all i ∈ P then θj ≥ maxi{C ix} ≥ maxi


C ix − M


k<j zik


and the result is also proven.

• If


k≥j zi′k = 0 for some i′ thenwe distinguish two subcases. If


k<j zi′k ≥ 1 then from (17) we easily get that (18) holds.
Otherwise,


k∈P zi′k = 0 and by (11b) there does exist an i′′ such that


k≥j zi′′k = r > 1. Thus, by using (19), Eq. (18)

also holds. �

Property 6. F z and F z
R3 have the same set of optimal solutions.

Proof. Since �z
⊂ �z

R2 and �z
R2 ⊂ �z

R3 then �z
⊂ �z

R3 and it is enough to prove that any optimal solution to F z
R3 is feasible

to F z . Since the set of optimal solutions of F z and F z
R2 coincides, we only need to prove that any optimal solution of F z

R3 is
feasible for F z

R2.
To see that any optimal solution (x, z, θ) to F z

R3 is feasible to F z
R2, it is enough to see that (x, z, θ) ∈ �z

R2, i.e. it satisfies
inequalities (11b) and (11d).

By a similar argument to the one applied in Property 4, any optimal solution (x, z, θ) of F z
R3 satisfies


j∈P zij = 1. There-

fore, satisfying inequality (11d′) implies inequality (11d).
Now (11b) follows directly from (11c) and (11b≤) since, otherwise, the sum of all constraints (11b≤) would not coincide

with the sum of all constraints (11c).
To see that (x, z, θ) also satisfies (11b), let us suppose w.l.o.g. that there exists exactly one j′ ∈ P such that


i∈P zij′ = 0.

Then, by adding up all constraints (11b≤)we have p−1 ≥


j∈P


i∈P zij =


i∈P


j∈P zij. Therefore, there must exist i′ ∈ P
such that


j∈P zi′j = 0. Thus, we observe that we can construct (x, z̄, θ̄ ), another optimal solution to F z

R3, setting z̄ij = zij, if
i ≠ i′ and z̄i′k = 1 for any k. Clearly, (x, z̄, θ̄ ) is a feasible solution to F z

R3 for some suitable θ̄ , satisfying in addition

C i′x ≤ θ̄k + M

ℓ<k

zi′ℓ, ∀k ∈ P.

Therefore, this inequality allows for any k ∈ P that θ̄k assumes a value smaller than or equal to θk, the one associated with
the solution (x, z, θ), and therefore its objective value is at least as good as the previous one. Hence, (x, z̄, θ̄ ) is also optimal.
In addition, values z̄ satisfy by construction that


i∈P z̄ij′ =


i≠i′ zij′ + z̄i′j′ = 0 + 1 = 1. Therefore (11b) holds. �

We can now relate the domains of the formulations considered so far.

Proposition 7. The following relationships hold

�z
0 ≡ �z ( �z

R1 ( �z
R2 ( �z

R3.

Proof. • �z ( �z
R1: Every feasible solution in �z verifies inequalities of �z

R1. However, a feasible solution in �z
R1 with

θj ≤ θj+1 for some j ∈ P is not feasible in �z .
• �z

R1 ( �z
R2: Every feasible solution in �z

R1 verifies the inequalities of �z
R2. However, a feasible solution in �z

R2 where for
some i ∈ P, zij = 1, for all j ∈ P is not feasible in �z

R1.
• �z

R2 ( �z
R3: Every feasible solution in �z

R2 verifies the inequalities of �z
R3. However, a feasible solution in �z

R3 with
zij = 0, i, j ∈ P is not feasible in �z

R2. �

Proposition 8. The dimension of �z
0 is p2 − p + 1 + dim(Q ).
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Proof. Suppose Q ⊆ Rn. Then, �z
0 is embedded in a space of dimension p2 + p + n. Furthermore, since there are 2p − 1

linearly independent equations in (11b) and (11c) and the dimension of Q does not depend on relations (11b)–(11e), then
the dimension of (11b)–(11f) is at most p2 − p+ 1+ dim(Q ). Denote q = dim(Q ) and ρ = p2 − 2p+ 1. Next, we show that
there exist q+ρ + p+1 (equal to p2 − p+2+ dim(Q )) affinely independent points in �z

0 and consequently, the dimension
of �z

0 is p2 − p + 1 + dim(Q ).
Let v = (vj)j∈P where vj = M + p − j + 1 for M > 0 and sufficiently large. Denoting by ej ∈ Rp the jth vector of the

canonical basis in Rp and 0 < ε < 1, let θ j
= {v + εej, j ∈ P}. Moreover, let θp+1

= (M, . . . ,M)′. We observe that the
vectors θ j, j = 1, . . . , p + 1 are affinely independent and each one of them satisfies inequalities (11e).

Next, since dim(Q ) = q, we take q + 1 arbitrary affinely independent vectors xi ∈ Q , i = 1, . . . , q + 1. Furthermore,
let zk ∈ {0, 1}p

2
k = 1, . . . , ρ + 1, be ρ + 1 affinely independent vectors satisfying (11b) and (11c). Note that the latter is

always possible since there are p2 degrees of freedom for the coordinates of z variables and only 2p equations being one of
them linearly dependent of the others.

Now, we prove that any point of the form ((xi)′, (zk)′, (θ l)′)′ i = 1, . . . , q + 1, k = 1, . . . , ρ + 1, l = 1, . . . , p + 1
satisfies (11b)–(11e). Indeed, by construction the first block of coordinates defines a point in Q , the second block satisfies
(11b) and (11c) and the third one (11e). Thus, it remains to prove that such a generic point also satisfies (11d) as follows:

C ixi ≤ M ≤ M + p − j + 1 ≤ θ l
j + M(1 − zkij), ∀ i, j.

Consider the q + ρ + p points defined as the column vectors of the matrix A = (A1
|A2

|A3) where

A1
=

x1 x2 . . . xq

z2 z1 . . . z1

θ2 θ1 . . . θ1

 , A2
=

x1 x1 . . . x1

z1 z2 . . . zρ

θ2 θ1 . . . θ1

 , A3
=

x1 x1 x1 . . . x1

z1 z3 z1 . . . z1

θ1 θ2 θ3 . . . θp

 .

By construction, each submatrix Ai has its column vectors linearly independent from one another since the ith block is
formed by linearly independent vectors. Next, clearly each column vector of A1 is linearly independent from those of A2 and
A3 and each column vector of A2 is linearly independent from those of A3. Therefore, the rank of A is q+ρ+p = q+p2−p+1.

Finally, the column vectors of A are linearly independent and feasible points of (11b)–(11e). In addition, we can easily
construct another feasible point, different from those considered previously and affinely independent of all of them, namely
((xq+1)′, (zρ+1)′, (θp+1)′)′. Hence the dimension of �z is q + ρ + p = q + p2 − p + 1. �

Proposition 9. The following inequalities define facets in �z
0:

C ix ≤ θp + M(1 − zip) i ∈ P (20)

θj ≥ θj+1 j ∈ P : j < p. (21)

Proof. (20) is a facet defining inequality:
We prove that for each i′ ∈ P there exist dim(�z

0) = p2 − p + dim(Q ) + 1 affinely independent points of �z
0 that verify

C i′x = θp + M(1 − zi′p).
As in the proof of the above proposition, we take q + 1 arbitrary affinely independent points xi, i = 1, . . . , q + 1 in Q .

Furthermore, let zk ∈ {0, 1}p
2
k = 1, . . . , ρ, be ρ affinely independent points (recall that ρ = p2 − 2p + 1) satisfying

(11b), (11c) and zi′p = 1. Note that the latter is always possible since there are p2 degrees of freedom for the coordinates of
z variables and 2p non redundant equations (2p − 1 as in the case above and zi′p = 1).

Let vl
= (vl

j)j∈P where vl
j = C i′xl + M + p − j if j < p and vl

p = C i′xl for M > 0 and sufficiently large. Denoting by
ej ∈ Rp the jth vector of the canonical basis in Rp and 0 < ε < 1, let θ̄ lj

= {vl
+ εej, j ∈ P} if j < p and θ̄ lp

= vl, θ̄ l,p+1
=

(C i′xl + M, . . . , C i′xl + M, C i′xl)′. We observe that for each l fixed, the vectors θ̄ lj j = 1, . . . , p + 1 are affinely independent
and each one of them satisfies inequalities (11e).

Now, we prove that any point of the form ((xl)′, (zk)′, (θ lj)′)′ k = 1, . . . , ρ, j = 1, . . . , p + 1 satisfies (11b)–(11e) and
zki′p = 1. Indeed, by construction the first block of coordinates defines a point in Q , the second block satisfies (11b), (11c)
and zi′p = 1, and the third one (11e). Thus, it remains to prove that such a generic point also satisfies (11d). We distinguish
two cases:

• If j < p then

C ixl ≤ C i′xl + M + p − j + 1 + M = C i′xl + M + p − j + M(1 − zkij) = θ̄ lj
+ M(1 − zkij), ∀i.

• If j = p we have that

C ixl ≤ C i′xl + M = C i′xl + M(1 − zkip), ∀ i ≠ i′,

C i′xl ≤ C i′xl = C i′xl + M(1 − zki′p), otherwise. (Recall that zki′p = 1.)
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Consider the q + ρ − 1 + p points defined as the column vectors of the matrix Ā = (Ā1
|Ā2

|Ā3) where

Ā1
=

 x1 x2 . . . xq

z2 z1 . . . z1

θ̄11 θ̄21 . . . θ̄ q1

 , Ā2
=

 x1 x1 . . . x1

z1 z2 . . . zρ−1

θ̄12 θ̄11 . . . θ̄11

 , Ā3
=

 x1 x1 x1 . . . x1

z1 z3 z1 . . . z1

θ̄11 θ̄12 θ̄13 . . . θ̄1p

 .

By construction, each submatrix Āi has its column vectors linearly independent from one another since the ith block is
formed by linearly independent vectors. Next, clearly each column vector of Ā1 is linearly independent from those of Ā2 and
Ā3 and each column vector of Ā2 is linearly independent from those of Ā3. Therefore, the rank of A is q+ρ−1+p = q+p2−p.

Finally, the column vectors of A together with the point ((xq+1)′, (zρ+1)′, (θ q+1,j)′)′ are feasible points of (11b)–(11e) that
satisfy C i′x = θp + M(1 − zi′p); and this last vector is clearly affinely independent from the those in Ā, therefore (20) is a
facet defining inequality for �z .
(21) is a facet defining inequality:

In order to prove that for each j′ ∈ P \ {p} there exist dim(�z
0) = p2 − p+ dim(Q ) + 1 affinely independent points of �z

0
that verify θj′ = θj′+1, we can proceed analogously as before considering v = (vj)

p
j=1, where vj = M + p − j + 1 if j ≠ j′ + 1

and vj′+1 = M + p − j′ + 2 and the points θ̂ j
= {v + ε(ej + ej′+1), j ∈ P \ {p}}. In addition, we take θ̂p

= (M, . . . ,M)′. We
observe that the vectors θ̂ j j = 1, . . . , p are affinely independent and each one of them satisfies θ̂

j
j′ = θ̂

j
j′+1.

Any point of the form ((xi)′, (zk)′, (θ̂ l)′)′ i = 1, . . . , q + 1, k = 1, . . . , ρ + 1, l = 1, . . . , p satisfies (11b)–(11e) and
θ̂ l
j′ = θ̂ l

j′+1.

Consider the q + ρ + p − 1 points defined as the column vectors of the matrix Â = (Â1
|Â2

|Â3) where

Â1
=

x1 x2 . . . xq

z2 z1 . . . z1

θ̂2 θ̂1 . . . θ̂1

 , Â2
=

x1 x1 . . . x1

z1 z2 . . . zρ

θ̂2 θ̂1 . . . θ̂1

 , Â3
=

x1 x1 x1 . . . x1

z1 z3 z1 . . . z1

θ̂1 θ̂2 θ̂3 . . . θ̂p−1

 .

By construction, each submatrix Âi has its column vectors linearly independent from one another since the ith block is
formed by linearly independent vectors. Next, clearly each column vector of Â1 is linearly independent from those of Â2 and
Â3 and each column vector of Â2 is linearly independent from those of Â3. Therefore, the rank of Â is q+ρ+p−1 = q+p2−p.

Finally, the column vectors of Â are linearly independent and are also feasible points of (11b)–(11e) that satisfy θj′ = θj′+1.
Next, we can easily add a new feasible point, for instance ((xq+1)′, (zρ+1)′, (θ̂p)′)′ that also satisfies θj′ = θj′+1 and that is
clearly affinely independent from the those in Â. Hence, (21) is a facet defining inequality for �z . �

Table 6 summarizes the previous proposed formulations. Formulas included on each formulation have been checked (✓)
whereas those not appearing are marked with a dot (·).

3.3. OWAP formulations with variables for the values of cost functions occupying specific sorted positions

Another OWAP formulation can be obtained by defining an additional set of continuous variables y = (yij)i,j∈P ∈ Rp×p,
where yij denotes the value of cost function i if it occupies the jth position in the ordering. The formulation is as follows:

F zy
0 : V = min


j∈P

ωj


i∈P

yij (22a)

s.t.

i∈P

zij = 1 j ∈ P (22b)
j∈P

zij = 1 i ∈ P (22c)

C ix ≤


i′∈P

yi′j + M(1 − zij) i, j ∈ P (22d0)


i∈P

yij ≥


i∈P

yij+1 j ∈ P : j < p (22e)

x ∈ Q , z ∈ {0, 1}p×p. (22f)

Next we study some properties of formulation F zy
0 and relate it to the OWAP formulations presented above. Denote by �

zy
0

the domain of Problem F zy
0 . Consider first, for anyM > 0 sufficiently large, the following set of inequalities

yij ≤ Mzij, i, j ∈ P. (22g)
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Table 6
Summary of the proposed formulations for the OWAP.

F z
0 F z F z

R1 F z
R2 F z

R3

min


j∈P ωjθj ✓ ✓ ✓ ✓ ✓
i∈P zij = 1, j ∈ P ✓ ✓ ✓ ✓ ·
j∈P zij = 1, i ∈ P ✓ ✓ ✓ · ·
i∈P zij ≤ 1, j ∈ P · · · · ✓

C ix ≤ θj + M(1 − zij), i, j ∈ P ✓ · · · ·

C ix ≤ θj + M

1 −


k≥j zik


, i, j ∈ P · ✓ ✓ ✓ ·

C ix ≤ θj + M


k<j zik, i, j ∈ P · · · · ✓

θj ≥ θj+1, j ∈ P : j < p ✓ ✓ · · ·

x ∈ Q , z ∈ {0, 1}p×p ✓ ✓ ✓ ✓ ✓

Property 10. There is an optimal solution to F zy
0 for which constraints (22g) hold.

Proof. Observe that constraints (22d0) imply that


k∈P ykj ≥ C ix for all i, j ∈ P with zij = 1. Since constraints (22b) indicate
that for j ∈ P fixed there exists a unique index, say i(j) with zi(j),j = 1, the above condition reduces to


k∈P ykj ≥ C i(j)x, for

all j ∈ P . Because of the non-negativity of the cost coefficients, we can thus deduce that an optimal solution exists to F zy
0 in

which
k∈P

ykj = C i(j)x, for all j ∈ P. (23)

Let now (x, y, z) ∈ �
zy
0 be such an optimal solution, and suppose it violates some constraint (22g). That is, there exist i′, j′ ∈ P

with yi′j′ > Mzi′j′ . Hence,


i∈P yij′ > Mzi′j′ , contradicting (23) unless zi′j′ = 0. In other words, i(j′) ≠ i′.
Consider now the solution (x, y, z), with the same x and z values as before where y is defined as follows:

yij =

0 if i = i′, and j = j′

yi(j′),j′ + yi′j′ if i = i(j′), and j = j′

yij otherwise.

Indeed (x, y, z) ∈ �
zy
0 , as it is immediate to check that it satisfies constraints (22b)–(22f). Furthermore, by construction,

it satisfies the constraint (22g) associated with i′, j′. Finally, note that it is optimal to F zy
0 , since


i∈P yij =


i∈P yij, for all

j ∈ P . �

Note that if there is j ∈ P withωj = 0 then it is possible to have optimal solutions to F zy
0 that do not satisfy constraints (22g).

However, because of Property 10, constraints (22g) can be useful to restrict the domain where optimal solutions are sought.
Let

�GS′

= {(x, y, z, θ) satisfying constraints (22b), (22c), (22d0), (22e), (22f), (22g)}.

Then, a different formulation that also ensures to obtain an optimal solutions to F zy
0 is:

FGS′

: V = min

j∈P

ωjθj

s.t. (x, y, z, θ) ∈ �GS′

.

Formulation FGS′

is closely related to the formulation used in Galand and Spanjaard [7] for modeling the minimum cost
spanning tree OWAP. In their formulation they operate on a domain which is like �GS′

except that constraints (22d0) have
been substituted by constraints

j∈P

yij = C ix i ∈ P. (22h)

Let �GS
= {(x, y, z, θ) satisfying constraints (22b), (22c), (22e), (22f), (22g), (22h)}, denote the domain used in [7]. Then,

it is straightforward to conclude the following.

Property 11. The domains �GS and �GS′

satisfy �GS
⊆ �GS′

. Moreover, if (x∗, y∗, z∗) is an optimal solution of FGS′

then it is
also optimal for FGS and conversely.

We can also relate F zy
0 with F z

0 and its variations. In particular, because of the relationship

θj =


i∈P

yij, j ∈ P (25)

we have:
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Table 7
Summary of the proposed formulations for the OWAP.

F zy
0 F zy F zy

R1 F zy
R2 F zy

R3

min


j∈P ωj


i∈P yij ✓ ✓ ✓ ✓ ✓
i∈P zij = 1, j ∈ P ✓ ✓ ✓ ✓ ·
j∈P zij = 1, i ∈ P ✓ ✓ ✓ · ·
i∈P zij ≤ 1, j ∈ P · · · · ✓

C ix ≤


i′∈P yi′ j + M(1 − zij), i, j ∈ P ✓ · · · ·

C ix ≤


i′∈P yi′ j + M

1 −


k≥j zik


, i, j ∈ P · ✓ ✓ ✓ ·

C ix ≤


i′∈P yi′ j + M


k<j zik, i, j ∈ P · · · · ✓
i∈P yij ≥


i∈P yij+1, j ∈ P : j < p ✓ ✓ · · ·

x ∈ Q , z ∈ {0, 1}p×p ✓ ✓ ✓ ✓ ✓

Property 12. For each optimal solution to F zy
0 , (x∗, y∗, z∗, θ∗), there exists (x∗, z∗, θ∗) optimal solution for F z

0 and conversely.
Moreover,


j∈P wj


i∈P y

∗

ij =


j∈P wjθ
∗

j .

By the above result, we can derive variations of F zy similar to the ones obtained for F z with similar properties. These con-
structions are straightforward and therefore are left for the interested readers.

Table 7 summarizes the formulations proposed in this subsection that can be derived from those of Section 3.2. Con-
straints included in each formulation have been checked (✓) whereas those not appearing are marked with a dot (·).

3.4. Using variables defining relative positions of sorted cost function values

We close this sectionwith another formulationwhich uses decision variables defining the relative positions of the sorted
cost function values. As we have seen in Section 3.1 it is possible to describe permutations with variables representing the
relative positions of the sorted values. Next we use such variables to obtain formulations for the OWAP.

For i, j ∈ P , consider the binary variable sij, i, j ∈ P as

sij =


1 if cost function i is placed before position j in the ordering,
0 otherwise.

As we have seen in Section 3.1, for all i, j ∈ P, sij = 1−


k≥j zik, i, j ∈ P . Therefore, variables z and s are related bymeans of

zij =


sij+1 − sij i ∈ P, j = 1, . . . , p − 1
1 − sij i ∈ P, j = p. (26)

Thus, we can reformulate the OWAP in the new space of the s variables as

F s
: V = min


j∈P

ωjθj (27a)

s.t.

i∈P

sij = j − 1 j ∈ P (27b)

sij+1 − sij ≥ 0 i, j ∈ P : j < p (27c)

C ix ≤ θj + Msij i, j ∈ P (27d)

θj ≥ θj+1 j ∈ P : j < p (27e)

x ∈ Q , s ∈ {0, 1}p×p. (27f)

Since F s is obtained from F z by a change of variable and there is a one to one correspondence between feasible solutions,
we can state the following result. Let �s be the feasible region of Problem F s.

Property 13. For each solution (x, s, θ) ∈ �s there exists (x, z, θ) ∈ �z with equal objective value and conversely.

By analogy with the notation used in Section 3.2 let us define the following domains and problems related to F s:

F s
R1 : V = min


j∈P

ωjθj

s.t. (x, s, θ) ∈ �s
R1
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with �s
R1 = {(x, s, θ) satisfying constraints (27b), (27c), (27d), (27f)}.

F s
R2 : V = min


j∈P

ωjθj

s.t. (x, s, θ) ∈ �s
R2

with �s
R2 = {(x, s, θ) satisfying constraints (27b), (27d), (27f)}.

F z
R3 : V = min


j∈P

ωjθj

s.t. (x, z, θ) ∈ �z
R3

with �s
R3 = {(x, s, θ) satisfying constraints (27b≤), (27d), (27f)}, where (27b≤) are the inequality version of constraints

(27b). That is,
i∈P

sij ≤ j − 1 j ∈ P. (27b≤)

Property 14. The following relationships hold.
1. Every optimal solution to F s

R1 is optimal to F s and conversely.
2. Every optimal solution to F s

R2 is optimal to F s and conversely.
3. Every optimal solution to F s

R3 is optimal to F s and conversely.
4. �s ( �s

R1 ( �s
R2 ( �s

R3.
Proof. The proofs of the above statements follow directly from the relationship that links variables z and s, namely (9)
and (10). Specifically, statement 1 follows from Property 3, statement 2 from Property 4, statement 3 from Property 6 and
statement 4 from Proposition 7. �

3.5. Formulations summary

Table 8 summarizes the previous formulations in this subsection. Constraints included in each formulation have been
checked (✓) whereas those not appearing are marked with a dot (·).

4. Valid inequalities and reinforcements for the OWAP formulation

4.1. Valid inequalities for the (OWAP) formulation

In this section we derive different valid inequalities for all the formulations presented in previous sections. For the sake
of simplicity, we present all inequalities for the formulations developed in Section 3.2. However, all these inequalities can
be easily adapted to the remaining formulations just by means of the substitutions explained by Eqs. (10) and (25).
• Constraints related to bounds of cost function values. Let li (ui) denote the minimum (maximum) objective value relative

to cost function i ∈ P , respectively. It is clear that li (ui) are valid lower (upper) bounds on the value of objective i, in-
dependently of the position of cost function i in the ordering. Therefore we obtain the following two sets of constraints
which are valid for the OWAP:

li ≤ C ix ≤ ui i ∈ P. (31)
• Constraints related to bounds of values in specific positions. Let lπj (uπ

j ) denote the jth lowest (largest) value of li (ui). Then,
lπj (uπ

j ) is a valid lower (upper) bound of the objective function sorted in position j, that is

lπj ≤ θj ≤ uπ
j j ∈ P. (32)

• Constraints related to bounds of cost function values in specific positions. Let lij and uij denote valid lower and upper bounds
on the value of objective i if it occupies position j, respectively. Then, lower and upper bounds on the value of objective
i are

min
j∈P

lij ≤ C ix ≤ max
j∈P

uij i ∈ P. (33)

Analogously to (32), we can sort the jth lowest (largest) value of minj∈P lij obtaining the following inequality

min
i∈P

lij ≤ θj ≤ max
i∈P

uij j ∈ P. (34)

• There are also different bounds on the value of the cost function i and the value of the cost function sorted in position j:
j∈P

max{li, lπj }zij ≤ C ix ≤


j∈P

min{ui, uπ
j }zij i ∈ P (35)


i∈P

max{li, lπj }zij ≤ θj ≤


i∈P

min{ui, uπ
j }zij j ∈ P. (36)
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Table 8
Summary of the proposed formulations for the OWAP.

F s F s
R1 F s

R2 F s
R3

min


j∈P ωjθj ✓ ✓ ✓ ✓
i∈P sij = j − 1, j ∈ P ✓ ✓ ✓ ·

sij+1 − sij ≥ 0, i, j ∈ P : j < p ✓ ✓ · ·
i∈P sij ≤ j − 1, j ∈ P · · · ✓

C ix ≤ θj + Msij, i, j ∈ P ✓ ✓ ✓ ✓

θj ≥ θj+1, j ∈ P : j < p ✓ · · ·

x ∈ Q , z ∈ {0, 1}p×p ✓ ✓ ✓ ✓

• The inclusion of the following constraint also allows to consider, in the original formulations in Section 3, weightsω ∈ R

that, consequently, could take both negative and positive values.

θj ≤ max
i∈P

{uij, C ix + M(1 − zij)} i, j ∈ P. (37)

• Constraints related to positions in the ordering. Constraints (38) impose that the position values are ordered in a non-
increasing order.

θj ≥ θj+1 j ∈ P\{p}. (38)

• Constraints related to subsets of cost functions. Next, we observe that for any subset I ⊆ P , of size k = 1, . . . , p
i∈I

C ix ≤

k
j=1

θj I ⊆ P. (39)

In particular, we consider the cases when I = {i}, I = {i, i′ ∈ P}, I = P \ {i} and I = P .

4.2. Valid inequalities for the (OWAP2) formulation

Note first that all previous inequalities from Section 4.1 can be applied to the two-index formulation of the OWAP substi-
tuting θj =


i∈P yij. Additionally, the following inequalities provide a reinforcement to the formulations using y variables:

• The following inequality combined with (22e) improves considerably the LP relaxation of the OWAP
k∈P

yik = C ix i ∈ P. (40)

• Constraint (22e) can be disaggregated by j ∈ P as:

yij ≤


i′∈P

yi′j + min{ui, uπ
j }


1 −


k≥j

zik


i, j ∈ P. (41)

• We can also establish a lower bound on the value of cost function i ∈ P if it is ordered in position j ∈ P by relating the
x, y and z variables as follows:

C ix ≤ yij + uπ
j (1 − zij) i, j ∈ P. (42)

Observe that, for i, j fixed, the above constraint imposes a lower bound on the value yij only when cost function i ∈ P is
ordered in position j ∈ P , and becomes inactive otherwise.

• We can also relate the values of two different cost functions between them, depending on their positions. In particular,
k≥j+1

yik ≤ yi′j + ui(1 − zi′j − zij) i, i′, j ∈ P, i ≠ i′, j ≠ p. (43)

For i, i′, j fixed, constraint (43) establishes that when cost function i′ occupies position j, its value cannot be smaller than
that of cost function i, provided that cost function i is ordered after j. Observe that the constraint becomes inactive when
i is ordered before j or is in j position (since in this case


k≥j+1 yik = 0) and when i′ does not occupy position j.

• A better effectiveness of the previous inequalities can be obtained by means of

yij+1 ≤ yi′j + (1 − zij+1)uij+1 + (1 − zi′j)ui′j i, i′, j ∈ P, i ≠ i′, j ≠ p (44)

which can be further reinforced to

yij+1 ≤ yi′j + (1 − zij+1)min{ui, uπ
j+1} + (1 − zi′j)min{ui′ , uπ

j } i, i′, j ∈ P, i ≠ i′, j ≠ p. (45)
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4.3. Lower and upper bounds: elimination tests

Several of the inequalities presented above use valid lower and upper bounds on the values of the different cost functions,
li and ui, respectively. As mentioned above, the minimum and the maximum objective value with respect to each cost
function provide such bounds. However, tighter bounds can be very useful for obtaining tighter constraints. One possibility
is to use lower and upper bounds on the value of each objective for the different positions in the ordering. In particular, if
Lij and Uij denote valid lower and upper bounds on the value of objective i if it occupies position j, respectively, then lower
and upper bounds on the value of objective i are li = minj∈P Lij and ui = maxj∈P Uij, respectively. For i, j ∈ P given, Lij and
Uij can be obtained in different ways. One alternative is to solve the linear programming (LP) relaxation of the formulation,
both for the minimization and the maximization of cost function i, with the additional constraint that it occupies position
j. In this case Lij (Uij) is the optimal value of the minimization (maximization) OWAP problem in which we fix the ordering
variable at value 1, i.e. zij = 1.

Next we present simple tests which can help to eliminate some variables by fixing their values. Broadly speaking these
tests compare the value of a lower bound associated with the decision of setting (or not setting) objective i at position jwith
the value of a known upper bound. If the value of the lower bound exceeds the value of the upper bound, the associated
decision variable can be fixed. Any feasible solution yields a valid upper bound, which corresponds to its value with respect
to the objective function. In the followingwe useU to denote the value of the upper bound corresponding to the best-known
solution. We also denote by L0ij the optimal value of the minimization OWAP problem in which we fix the ordering variable
at value 0, i.e. zij = 0. Then for each i ∈ P, j ∈ P we have

• If Lij > U then zij = 0 (no optimal solution will have objective i in position j).
• If L0ij > U then zij = 1 (no optimal solution will not have objective i in position j).

5. The OWA problem on shortest paths and minimum cost perfect matchings

This section presents the formulations of the combinatorial objects that we use in our computational experiments,
namely shortest paths and minimum cost perfect matchings. In order to test our results we have chosen two of the most
well-known formulations for these two problems. These formulations have to be combinedwith those presented in previous
sections to provide validOWAPmodels for the Shortest Path Problem (SPP) (see e.g. [2,21]) and the PerfectMatching Problem
(PMP) (see e.g. [3,8]). All the details are given in what follows.

5.1. The shortest path problem

We consider now the OWAP when Q is the SPP (see e.g. [2]). Let G = (V , E) be an undirected graph with set of vertices
V , |V | = n and set of edges E, |E| = m. In addition to the sets of variables required tomodel the order of the p cost functions
ranked by non-increasing criterion values, we will need additional variables used to model the structure of the combinato-
rial object (shortest path in this case). For modeling the shortest path between two selected vertices, u1, un ∈ V we use a
flow-based formulation, in which binary design variables x are related to continuous flow variables ϕ. In particular, for each
e = (u, v) ∈ E let

xe ≡ xuv =


1 edge e ≡ (u, v) is in the shortest path,
0 otherwise.

As usual, paths between u1, un ∈ V can be obtained by identifying the arcs that are usedwhen one unit of flow is sent from u1
to un. For the flow variables we consider a directed network, with set of vertices V and set of arcs Awhich contains two arcs,
one in each direction, associated with each edge of E. For each (u, v) ∈ Awe define the decision variables ϕuv which repre-
sents the amount of flow through arc (u, v). Then a characterization of the domain of feasible solutions (Q ) for the SPP is:

(u,v)∈A

ϕu,v −


(u,v)∈A

ϕv,u = 1 u = u1 (46a)


(u,v)∈A

ϕu,v −


(u,v)∈A

ϕv,u = −1 u = un (46b)


(u,v)∈A

ϕu,v −


(u,v)∈A

ϕv,u = 0 u ∈ V \ {u1, un} (46c)

ϕu,v + ϕv,u ≤ xuv (u, v) ∈ E (46d)

ϕuv ≥ 0 (u, v) ∈ A (46e)
xe ∈ {0, 1} e ∈ E. (46f)

Constraints (46a)–(46c) guarantee flow conservation at any vertex of the network. Constraints (46d) relate the ϕ and x
variables, by imposing that all the edges used for sending flow in some direction are activated.
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5.2. The perfect matching problem

We consider now the OWAP when Q is the PMP (see e.g. [3]). It is well known that the PMP is polynomially solvable by
using the Blossom algorithm [3]. However, to the best of our knowledge it is not known how such an algorithm could be
used for solving an OWAP in which Q is given by the set of perfect matchings on a given graph. Indeed, this can be done by
using any of the OWAP formulations we have introduced in the previous sections.

Let G = (V , E) be an undirected graph with set of vertices V , |V | = n and set of edges E, |E| = m. In addition to
the sets of variables required to model the order of the p cost functions ranked by non-increasing criterion values, we
will need additional variables used to model the structure of the combinatorial object (perfect matching in this case). For
modeling the perfect matching we use binary design variables x associated with the edges of the graph. In particular, for
each e = (u, v) ∈ E let

xe ≡ xuv =


1 edge e ≡ (u, v) is in the matching,
0 otherwise.

We introduce some additional notation. For S ⊂ V , E(S) = {e = (u, v) ∈ E | u, v ∈ S} and δ(S) = {e = (u, v) ∈ E | u ∈

S, v ∉ S}. When S is a singleton, i.e. S = {u} with u ∈ V we simply write δ({u}) = δ(u). Then, a characterization of the
domain of feasible solutions for the PMP (Q ) is:

e∈δ(u)

xe = 1 u ∈ V (47a)

xe ∈ {0, 1} e ∈ E. (47b)

Constraints (47a) guarantee that in the solution the degree of every vertex is one.

6. Computational experience

In this sectionwe report on the results of some computational experiments we have run, in order to compare empirically
the proposed formulations and reinforcements. We have studied the OWAP over the two combinatorial objects proposed:
shortest paths andminimum cost perfect matchings. The best formulation obtained for each combinatorial object, has been
later used for studying the proposed valid inequalities, including them one by one separately. Then, for each combinatorial
object, we have obtained results for 14 basic formulations (i.e., without adding any valid inequality) plus 19 ‘‘reinforced’’
formulations. For the sake of readability, we display results in tables just for the three best basic formulations and graphics
for both basic and reinforced formulations. For further details, the reader may refer to Fernández et al. [5] in order to check
all the results obtained in the computational experiments organized by tables.

The OWA operator allows to model various aggregation functions according to the vector of weights w (see e.g. [16]).
Some examples are the minimum, maximum, median, center or k-centrum functions. Therefore, the variation of w into
non/monotonic or non/symmetric weights is directly connected with a problem structure and thus with a problem com-
plexity [11]. Some elegant linearization of OWA functions have been proposed in the literature for some subclasses of OWA
operators (see e.g. [17,18], for convex OWA with decreasing weights). For keeping the extension of the paper within some
reasonable limits, in our computational experience we study a particular case of the OWA operator, namely the Hurwicz cri-
terion [10], defined asα maxi∈P yi+(1−α)mini∈P yi. This criterion is non-monotonic and non-convex and, in our experience,
its behavior in terms of computational effort to get optimal solutions is similar to that of other non-convex OWA criteria.
In addition, this objective has been already considered when analyzing the behavior of OWA operators in multiobjective
optimization (see e.g. [7]) and it is of special interest for being non-convex since the sorting weights, α, are not in a non-
increasing order [9,20]. The considered values ofα are {0.4, 0.6, 0.8} and the number of objectives ranges in |P| ∈ {4, 7, 10}.
Graphs generation is described below considering three different sizes of the graph according to |V | ∈ {100, 225, 400}. In
addition, for each selection of the parameters (|V |, p, α), 10 instances were randomly generated so, in total, we have a set of
270 benchmark instances. All instances were solved with the MIP Xpress optimizer, under a Windows 7 environment in an
Intel(R) Core(TM)i7 CPU 2.93 GHz processor and 8 GB RAM. Default values were used for all solver parameters. A CPU time
limit of 600 s was set.

For the benchmark instances, we generated square grid networks produced as with the SPGRID generator of Cherkassky
et al. [2] for both combinatorial objects. Nodes of these graphs correspond to points on the plane with integer coordinates
[x, y], 1 ≤ x ≤

√
|V |, 1 ≤ y ≤

√
|V |. These points are connected ‘‘forward’’ by arcs of the form ([x, y], [x + 1, y]), 1 ≤ x <√

|V |, 1 ≤ y ≤
√

|V |; ‘‘up’’ by arcs of the form ([x, y], [x, y + 1]), 1 ≤ x ≤
√

|V |, 1 ≤ y <
√

|V | and ‘‘down’’ by arcs of the
form ([x, y], [x, y − 1]), 1 ≤ x ≤

√
|V |, 1 < y ≤

√
|V | and by arcs of the form ([x, y], [x + 1, y − 1]), 1 ≤ x ≤

√
|V |, 1 <

y ≤
√

|V |. The components of the cost vectors are randomly drawn from a uniform distribution on [1, 100]. Note also that
shortest paths are computed between nodes 1 and |V | whereas node |V | is removed for the PMP when |V | is odd.

Each of our tables reports the following items. Each row corresponds to a group of 10 instances with the same charac-
teristics (|P|, |V |, α) indicated in the first three columns. Column t(#) reports firstly the average running time in seconds
of the 10 instances of the row. In addition, if at least one instance reaches the CPU time limit, we indicate in brackets the
number of instances that could be solved to optimality within themaximum CPU time limit and, in such a case, we compute
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Fig. 1. Comparative results for the proposed OWAP basic formulations applied to the shortest path problem (p = 10, |V | = 400).

the average running time by using the CPU time limit for those instances that could not be solved to optimality. Column
t∗/gap∗ reports the biggest CPU time over the 10 instances of the group. Whenever the time limit is reached, the relative
gap (indicated with a percentage %) is reported instead. Column #nodes indicates the average number of nodes explored in
the branch and bound tree and column gapLR reports the relative gap computed with the best solution found by the solver
and the linear relaxation optima at the root node. All tables report analogous items for the different formulations described
along the paper. The best three formulations for each combinatorial object are F z

R2, F
zy
R2, and F s for the SPP; and F z

R1, F
zy
R1, and

F s
R1 for the PMP. Entries in bold remark best values among the 16 basic formulations (all tables are available at [5]).
Figs. 1 and 2 summarize the comparative results of all proposed basic formulations applied to each combinatorial object

respectively. In these graphics the x-axis displays the different variations of the formulations presented in Section 3 and
the y-axis the features analyzed. All displayed bars represent percentages of mean values computed over 90 instances with
|V | = 400. These are the 90 hardest instances for the solver among the 270 we generated.

In particular the row labeledwith ‘‘t, gap’’ shows a barwith themean values of the running timesmeasured in percentage
over 600 s. For those instances reaching the time limit, we compute themean running time taking the value of the time limit.
Moreover, a dashed line indicates the percentage of worst case gap among those instances that have reached the time limit.
The columns in the row labeled with ‘‘nodes’’ show the percentage of nodes over 106 that have been visited in the branch
and bound tree. The columns in the row labeled with ‘‘gapLR’’ report the percentage gap relative to the best solution found
by the solver and the linear relaxation optima at the root node.

From the results displayed in Table 9 and Fig. 1, we observe first that the gapLR is similar for all formulations except for F z
0

and F zy
0 , where a 100%of gap is reached. Formulations F z

R2 and F zy
R2 increase slightly the gapLR in comparisonwith the remaining

formulations but this does not affect negatively in the exploration as we see next. The values of nodes and t, gap are strongly
related for each one of the formulations. F z

0 , F
z
R3, F

zy
0 and F zy

R3 give the worst values. In contrast, F z
R2, F

zy
R2 and F s produce the

best values. In addition, we observe a regular behavior among all formulations with s variables, namely F s, F s
R1, F

s
R2 and F s

R3.
Regarding the PMP, analogous conclusions can be obtained in Table 10 and Fig. 2 for the gapLR and the relations between
nodes and t, gap. However, in this case, formulations F z

R1 and F zy
R1 produce the best values together with F s

R1, F
s
R2 and F s

R3.
Figs. 3 and 4 report analogous items as Figs. 1 and 2, but now when the valid inequalities of Section 4 are incorporated

to the best basic formulations obtained for each combinatorial object. The x-axis displays the different variations in the for-
mulations, starting first with the best basic formulation. Next labels refer to the valid inequality that has been added. Labels
of the valid inequalities correspond with those of Section 4, where ‘‘0.1’’ and ‘‘0.2’’ refer to the two inequalities displayed in
a single equation (for example the two valid inequalities of Eq. (31) are labeled as (31.1) and (31.2)). In the following wewill
refer indistinctly to a valid inequality and the formulation that includes such valid inequality. All displayed bars represent
percentages of mean values computed over 30 random instances with p = 10, |V | = 400 and α ∈ {0.4, 0.6, 0.8}.

From the results displayed in Fig. 3, we observe first that the gapLR is similar for all formulations but (32.1), (36.1), (37),
(39.1) and (40). As compared with F zy

R2, formulation (36.1) improves the values of gapLR, nodes and t, gap. However, (32.1),
(39.1) and (40) improve gapLR but are not able to improve nodes or t, gap. We also note that (37) increases gapLR since this
gap is computed with a (low quality) best solution found by the solver and the linear relaxation optima at the root node. In
addition, formulations (31.1), (31.2) and (39.4) provide promising results in comparison with the values of nodes and t, gap.

From the results displayed in Fig. 4, we observe first that the gapLR is similar for all formulations but (32.1), (36.1), (37)
and (40). As compared with F z

R1, formulations (32.1) and (36.1), improve gapLR and nodes or t, gap. However, (40) improves
gapLR but is not able to improve nodes or t, gap in comparison with the best basic formulation for PMP, namely F z

R1. We
also note that (37) increases gapLR since this gap is computed with a (low quality) best solution found by the solver and the
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Table 9
Results obtained for the three best OWAP basic formulations applied to the shortest path problem.

Inst F z
R2 F zy

R2 F s

|V | p α t(#) t∗/gap∗ #nodes gapLR t(#) t∗/gap∗ #nodes gapLR t(#) t∗/gap∗ #nodes gapLR

100 4 0.4 0.5 0.6 15 55.79 0.4 0.6 13 55.79 8.4 59.9 16959 53.72
100 4 0.6 0.5 0.6 41 40.17 12 116.5 56370 40.17 31.9 213.4 113492 37.39
100 4 0.8 0.4 0.5 61 24.26 0.4 0.5 48 24.26 2.4 7.9 2871 20.79
100 7 0.4 0.6 0.7 200 52.77 0.6 0.8 177 52.77 121 (8) 40.66% 210086 51.11
100 7 0.6 0.7 0.8 360 38.19 0.8 1.6 468 38.19 121 (8) 22.74% 193167 36.01
100 7 0.8 0.9 1.6 839 23.76 0.9 1.4 760 23.76 20.8 125.9 36870 21.08
100 10 0.4 2.1 4.2 6658 51.98 2.5 10.3 9 239 51.98 195.2 (7) 43.64% 273035 49.29
100 10 0.6 4.1 13.2 16386 37.89 2.8 11.1 9985 37.89 178.6 (8) 24.44% 238513 34.4
100 10 0.8 5.5 27.9 23353 24.83 13.1 49.4 57599 24.83 95.3 500.7 127230 20.61
225 4 0.4 0.8 1 48 55.77 0.8 1.1 45 55.77 64.4 (9) 52.43% 29874 55
225 4 0.6 0.8 1 44 39.42 0.8 1 49 39.42 91.5 (9) 31.77% 41747 38.31
225 4 0.8 0.8 1.1 95 22.13 0.8 1.2 84 22.13 243.8 (6) 14.08% 70842 20.7
225 7 0.4 1.2 1.3 99 52.61 1.3 1.8 151 52.61 129 (8) 49.52% 41763 51.29
225 7 0.6 3.3 8.8 1554 37.63 16.2 143.6 10871 37.63 185.6 (7) 31.25% 63146 35.83
225 7 0.8 4.6 22.1 3 082 22.76 2.6 6.1 1204 22.76 305 (5) 14.19% 105127 20.44
225 10 0.4 9.1 62.7 6 427 51.68 5.4 24.9 4222 51.68 317.1 (5) 49.98% 95076 50.33
225 10 0.6 15.2 56.6 10148 37.07 10.8 39.7 7537 37.07 319.5 (5) 32.14% 96370 35.15
225 10 0.8 38.1 147.8 41223 23.12 29.6 141.5 32090 23.12 279.6 (6) 15.16% 85419 20.81
400 4 0.4 1.4 1.8 57 55.07 1.3 1.6 55 55.07 3.3 16.8 286 54.44
400 4 0.6 1.6 2 95 38.71 1.5 1.8 76 38.71 88.5 (9) 35.79% 13806 37.84
400 4 0.8 1.8 2.9 182 21.57 1.8 3.1 265 21.57 255.9 (6) 17.21% 49806 20.47
400 7 0.4 6.5 41.1 1102 52.72 19.3 169 4370 52.72 76.4 (9) 50.67% 9192 51.85
400 7 0.6 9.4 62.6 2952 37.41 63.4 (9) 33.32% 10416 37.48 70.9 (9) 34.59% 8711 36.27
400 7 0.8 8.1 30.2 1994 21.87 7.2 24.6 1999 21.87 368.8 (4) 18.29% 32614 20.41
400 10 0.4 158.5 (9) 1.09% 100979 51.8 116.1 242.7 83991 51.8 306.4 (5) 48.93% 24184 50.73
400 10 0.6 61.8 121.5 37448 36.48 33.2 115.9 17308 36.48 132.4 (8) 31.48% 10395 35.01
400 10 0.8 229.9 (8) 0.61% 143034 21.82 155.6 (9) 0.04% 104042 21.82 142.6 (8) 17.18% 12829 19.99

Table 10
Results obtained for the three best OWAP basic formulations applied to the perfect matching problem.

Inst F z
R1 F zy

R1 F s
R1

|V | p α t(#) t∗/gap∗ #nodes gapLR t(#) t∗/gap∗ #nodes gapLR t(#) t∗/gap∗ #nodes gapLR

100 4 0.4 0.6 0.7 186 55.44 0.6 0.7 139 55.44 0.5 0.7 147 55.44
100 4 0.6 0.6 0.7 152 38.98 0.6 0.7 140 38.98 0.6 0.8 175 38.98
100 4 0.8 0.6 0.7 302 21.53 0.7 0.8 329 21.53 0.6 0.7 157 21.53
100 7 0.4 1 1.3 236 52.18 1 1.2 256 52.18 1 1.2 205 52.18
100 7 0.6 1.1 1.4 480 35.97 1.2 1.8 591 35.97 1.2 1.6 529 35.97
100 7 0.8 1.4 2 965 20.27 1.5 2.3 1 008 20.27 1.3 1.8 1075 20.27
100 10 0.4 1.5 1.9 299 50.66 1.7 4.1 580 50.66 1.5 1.9 333 50.66
100 10 0.6 1.9 2.6 963 34.85 1.9 2.9 985 34.85 2 2.8 922 34.85
100 10 0.8 6 19.4 6329 20.2 5.6 17.6 5364 20.2 6.1 19.8 7 018 20.2
225 4 0.4 2.1 4.4 1 188 55.09 2 2.9 990 55.09 1.9 4.1 1095 55.09
225 4 0.6 1.7 2.9 1236 38.57 1.7 2.5 1239 38.57 1.7 2.2 982 38.57
225 4 0.8 1.9 3.2 1101 21.09 1.9 3.7 1240 21.09 2 3.6 1221 21.09
225 7 0.4 7.1 22.8 9208 52.34 8.4 36 5617 52.34 8.7 29.3 6 308 52.34
225 7 0.6 10 16 6038 36.27 9.7 18.3 6 206 36.27 8.8 15.9 5432 36.27
225 7 0.8 17.2 62.5 10491 20.32 17.1 48.7 10746 20.32 14.7 50.1 9525 20.32
225 10 0.4 7.5 13.2 2 136 50.25 7.4 12.4 2 464 50.25 7.8 15.5 2 265 50.25
225 10 0.6 32.4 123.2 15537 34.56 33.9 90.1 13763 34.56 31.5 70.1 15465 34.56
225 10 0.8 295 (8) 0.32% 114029 19.62 338.7 (7) 12.07% 130079 19.7 344.7 (8) 0.33% 133025 19.62
400 4 0.4 7.3 22.3 3 345 55.37 6.3 15.5 2 546 55.37 6.1 9.6 2777 55.37
400 4 0.6 6.7 11.9 4103 39.04 7.5 16.7 4 044 39.04 8.7 25.3 6 589 39.04
400 4 0.8 9 22.1 5397 21.03 11.4 44.9 6 263 21.03 9.2 19.4 5 194 21.03
400 7 0.4 34.4 144.4 10464 52.05 48.9 257 15696 52.05 37.7 218.2 11164 52.05
400 7 0.6 83.4 250.9 27604 36.12 74.5 209.5 26944 36.12 78.7 185.1 28692 36.12
400 7 0.8 84.4 187.6 28762 20.19 98.2 182.5 35369 20.19 92.6 206.4 34328 20.19
400 10 0.4 68.4 197.4 13777 50.58 86.7 387.2 17514 50.58 91.9 407.6 19024 50.58
400 10 0.6 289.4 (9) 0.11% 61886 34.54 335 (9) 0.24% 69457 34.54 285.7 563.5 59428 34.54
400 10 0.8 583.5 (1) 0.42% 97022 19.5 599 (1) 0.4% 93171 19.5 577 (1) 0.43% 97258 19.52

linear relaxation optima at the root node. In addition, formulations (35.2), (36.2) and (39.3) provide promising results in
comparison with the values of nodes or t, gap.

In summary, we observe the performance of the OWAP formulation depends on its combination with the considered
combinatorial object. In particular we conclude, from our computational experience, that for the SPP, it is convenient to
apply F zy

R2 reinforced with (31.1) and (31.2); although rather similar results can be obtained with F z
R2. The conclusion for the
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Fig. 2. Comparative results for the proposed OWAP basic formulations applied to the perfect matching problem (p = 10, |V | = 400).

Fig. 3. Comparative results for the proposed OWAP reinforced formulations applied to the shortest path problem (p = 10, |V | = 400).

Fig. 4. Comparative results for the proposed OWAP reinforced formulations applied to the perfect matching problem (p = 10, |V | = 400).

PMP is different, because the best basic formulation is now F z
R1 and the reinforcements (32.1). Once more, rather similar

results are obtained for F zy
R1 and F s

R1. Therefore, we cannot conclude whether there is a formulation superior to all the others
regardless of the domain Q to be considered. For this reason it is important to have developed the catalog of formulations
and valid inequalities presented in this paper. In general, it is advisable to test them depending on the combinatorial object
to be considered.
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7. Conclusions

In this work we have presented and revisited different mathematical programming formulations for the OWAP using
different sets of decision variables. These formulations reinforced with appropriate constraints have shown to be rather
promising for efficiently solvingmanymedium size OWAP instances. However, from the obtained results it is also clear that
for solving larger OWAP instances with more objective functions further improvements are needed. Our current research
focuses on the design of more sophisticated elimination tests as well as from alternative formulations leading to tighter LP
bounds.
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